Symbolic Integration
   HOME

TheInfoList



OR:

In
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, symbolic integration is the problem of finding a formula for the
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
, or ''indefinite integral'', of a given
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
''f''(''x''), i.e. to find a
differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in it ...
''F''(''x'') such that :\frac = f(x). This is also denoted :F(x) = \int f(x) \, dx.


Discussion

The term symbolic is used to distinguish this problem from that of
numerical integration In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations ...
, where the value of ''F'' is sought at a particular input or set of inputs, rather than a general formula for ''F''. Both problems were held to be of practical and theoretical importance long before the time of digital computers, but they are now generally considered the domain of
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
, as computers are most often used currently to tackle individual instances. Finding the derivative of an expression is a straightforward process for which it is easy to construct an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
. The reverse question of finding the integral is much more difficult. Many expressions which are relatively simple do not have integrals that can be expressed in closed form. See
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
and
nonelementary integral In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an ''elementary function'' (i.e. a function constructed from a finite number of quotients of constan ...
for more details. A procedure called the
Risch algorithm In symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra ...
exists which is capable of determining whether the integral of an
elementary function In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and ...
(function built from a finite number of
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above * Exponential decay, decrease at a rate proportional to value *Exp ...
s,
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
s, constants, and
nth root In mathematics, a radicand, also known as an nth root, of a number ''x'' is a number ''r'' which, when raised to the power ''n'', yields ''x'': :r^n = x, where ''n'' is a positive integer, sometimes called the ''degree'' of the root. A root ...
s through
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
and combinations using the four elementary operations) is elementary and returning it if it is. In its original form, Risch algorithm was not suitable for a direct implementation, and its complete implementation took a long time. It was first implemented in
Reduce Reduction, reduced, or reduce may refer to: Science and technology Chemistry * Reduction (chemistry), part of a reduction-oxidation (redox) reaction in which atoms have their oxidation state changed. ** Organic redox reaction, a redox react ...
in the case of purely transcendental functions; the case of purely algebraic functions was solved and implemented in Reduce by James H. Davenport; the general case was solved and implemented in
Axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
by Manuel Bronstein. However, the Risch algorithm applies only to ''indefinite'' integrals, while most of the integrals of interest to physicists, theoretical chemists, and engineers are ''definite'' integrals often related to
Laplace transform In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (), is an integral transform In mathematics, an integral transform maps a function from its original function space into another function space via integra ...
s,
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
s, and
Mellin transform In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used i ...
s. Lacking a general algorithm, the developers of
computer algebra system A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The de ...
s have implemented
heuristics A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, ...
based on pattern-matching and the exploitation of special functions, in particular the incomplete gamma function. Although this approach is heuristic rather than algorithmic, it is nonetheless an effective method for solving many definite integrals encountered by practical engineering applications. Earlier systems such as
Macsyma Macsyma (; "Project MAC's SYmbolic MAnipulator") is one of the oldest general-purpose computer algebra systems still in wide use. It was originally developed from 1968 to 1982 at MIT's Project MAC. In 1982, Macsyma was licensed to Symbolics a ...
had a few definite integrals related to special functions within a look-up table. However this particular method, involving differentiation of special functions with respect to its parameters, variable transformation,
pattern matching In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be ...
and other manipulations, was pioneered by developers of the
Maple ''Acer'' () is a genus of trees and shrubs commonly known as maples. The genus is placed in the family Sapindaceae.Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 nd more or less continuously updated since http ...
system and then later emulated by Mathematica,
Axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
,
MuPAD MuPAD is a computer algebra system (CAS). Originally developed by the MuPAD research group at the University of Paderborn, Germany, development was taken over by the company SciFace Software GmbH & Co. KG in cooperation with the MuPAD research gro ...
and other systems.


Recent advances

The main problem in the classical approach of symbolic integration is that, if a function is represented in closed form, then, in general, its
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
has not a similar representation. In other words, the class of functions that can be represented in closed form is not closed under antiderivation.
Holonomic function In mathematics, and more specifically in analysis, a holonomic function is a smooth function of several variables that is a solution of a system of linear homogeneous differential equations with polynomial coefficients and satisfies a suitable d ...
s are a large class of functions, which is closed under antiderivation and allows algorithmic implementation in computers of integration and many other operations of calculus. More precisely, a holonomic function is a solution of a homogeneous
linear differential equation In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b ...
with polynomial coefficients. Holonomic functions are closed under addition and multiplication, derivation, and antiderivation. They include
algebraic function In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations additi ...
s,
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
,
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
, sine, cosine,
inverse trigonometric functions In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
,
inverse hyperbolic functions In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions. For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle. The s ...
. They include also most common special functions such as
Airy function In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solut ...
, error function,
Bessel function Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrar ...
s and all hypergeometric functions. A fundamental property of holonomic functions is that the coefficients of their
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
at any point satisfy a linear
recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
with polynomial coefficients, and that this recurrence relation may be computed from the differential equation defining the function. Conversely given such a recurrence relation between the coefficients of a
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
, this power series defines a holonomic function whose differential equation may be computed algorithmically. This recurrence relation allows a fast computation of the Taylor series, and thus of the value of the function at any point, with an arbitrary small certified error. This makes algorithmic most operations of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, when restricted to holonomic functions, represented by their differential equation and initial conditions. This includes the computation of antiderivatives and definite integrals (this amounts to evaluating the antiderivative at the endpoints of the interval of integration). This includes also the computation of the
asymptotic behavior In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing Limit (mathematics), limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very larg ...
of the function at infinity, and thus the definite integrals on unbounded intervals. All these operations are implemented in the ''algolib'' library for
Maple ''Acer'' () is a genus of trees and shrubs commonly known as maples. The genus is placed in the family Sapindaceae.Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 nd more or less continuously updated since http ...
. See also the Dynamic Dictionary of Mathematical functions.http://ddmf.msr-inria.inria.fr ''Dynamic Dictionary of Mathematical functions''


Example

For example: :\int x^2\,dx = \frac + C is a symbolic result for an indefinite integral (here C is a
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connected ...
), :\int_^1 x^2\,dx = \left frac\right^1= \frac - \frac=\frac is a symbolic result for a definite integral, and :\int_^1 x^2\,dx \approx 0.6667 is a numerical result for the same definite integral.


See also

* * * * * * *


References

* *


External links

* {{MathWorld, urlname=RischAlgorithm, title=Risch Algorithm, author=Bhatt, Bhuvanesh
Wolfram Integrator
— Free online symbolic integration with Mathematica Computer algebra Differential algebra